The Collier Report of U.S. Government Contracting

Old School Reporting Using Modern Technology

Grainflow Dynamics Inc

  • Contact Person: Otis Walton
  • Contact Phone: 925-447-4293
  • Contact Email: walton@grainflow.com
  • Business Structure:
  • Corporate Entity (Not Tax Exempt)
  • Business Type:
  • For Profit Organization
  • Subchapter S Corporation
  • Industries Served: Research and Development in the Physical, Engineering, and Life Sciences (except Biotechnology)
  • Product Areas: AUTO NEWS, DATA & OTHER SVCS, IT AND TELECOM- WEB-BASED SUBSCRIPTION

Sampling of Federal Government Funding Actions/Set Asides

In order by amount of set aside monies.

  • $124,870 - Monday the 17th of December 2012
    National Aeronautics And Space Administration
    NASA SHARED SERVICES CENTER
    A NOVEL, ROBUST METHOD OF COLLECTION AND TRANSFER OF NEO/PHOBOS MATERIAL UNDER MICRO-GRAVITY CONDITIONS UNDER VACUUM/SPACE ENVIRONMENT WITH MINIMAL LOSS OF VOLATILES WILL BE DEVELOPED AND ITS FEASIBILITY DEMONSTRATED. THE SAME DESIGNS CAN ALSO BE UTILIZED IN LUNAR OR MARTIAN APPLICATIONS WITH ONLY MINOR MODIFICATIONS. DESIGN OF THE LIGHT-WEIGHT FLEXIBLE CONVEYOR DUCTS WILL UTILIZE RECENTLY VERIFIED REGOLITH SIMULATION SOFTWARE TO ASSURE THAT THE CONCEPTS ARE VIABLE UNDER MICROGRAVITY CONDITIONS, AND PROTOTYPES WILL BE TESTED UNDER VACUUM CONDITIONS IN PHASE-1 (AND UNDER MICRO-GRAVITY DURING PHASE-2). DEPENDING ON THE DRILL-HEAD/FEEDER DESIGN SELECTED, THESE FLEXIBLE TRANSFER DUCTS COULD BE USED IN EXTRACTION OF MATERIAL FROM DEPTHS OF A METER OR MORE BELOW THE SURFACE. UNDER MARTIAN CONDITIONS A 1-CM-DIAMETER CONVEYING DUCT COULD DELIVER 5 KG/HR OF MATERIAL TO A PROCESSING STATION FOR EXTRACTION/PROCESSING OF VOLATILES. TRADE-OFF STUDIES DURING PHASE-1 WILL DETERMINE POTENTIAL POWER SAVING (IF ANY) IN LARGER DIAMETER CONVEYING DUCTS (E.G., 1.5 OR 2CM DIA) AND/OR THE POWER REQUIREMENTS IN A SMALLER DIAMETER CONVEYING DUCT (E.G. 0.5 CM DIA) UNDER MARTIAN CONDITIONS. UNLIKE CONVENTIONAL SCREW CONVEYORS, THESE FLEXIBLE TRANSFER DUCTS WOULD BE ROBUST TO OVERSIZE MATERIAL UP TO A SIZE OF ONE-HALF THE TRANSFER DUCT RADIUS. COUPLED WITH AN OVERSIZE-REJECTION INLET FEEDER, THE SYSTEM COULD PROVIDE HIGH RELIABILITY TRANSFER OF LOOSE REGOLITH WITH ONE OR TWO MAJOR MOVING PARTS. MODULAR DESIGNS ARE POSSIBLE, AS IS THE INCORPORATION OF ENERGY-EFFICIENT ULTRASONIC (OR PERCUSSION) DRILL HEADS, OR SENSORS NEAR A SUB-SURFACE INLET.

© Copyright 2019
The Collier Report
published by 1918 Media LLC.
Information displayed in this dossier has been provided through available open source or public sources. No reliance should be made by readers or Collier Report subscribers. Funding actions are complicated and do not always represent dollar-for-dollar payments to vendors nor do they represent payments in certain instances. Requests for the modification of displayed information may be made to help.desk@1918.media.